Bioprocessing of Sweet potato into Food, Feed and Fuel: CTCRI (India) experience

R.C.Ray¹, S.K.Naskar¹, G. Padmaja², A.N. Jyothi² and S. Edison² ¹Regional Centre of CTCRI, Bhubaneswar 751 019, India ² CTCRI, Thiruvanathapuram 695 017, India

Introduction

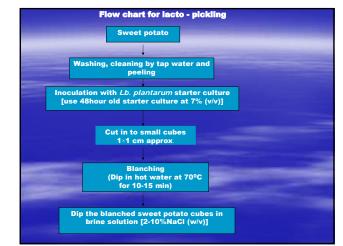
- Sweet potato (SP): World's 7th most important crop
- India: a leading producer of SP- produces more than 1 million tons, annually
- Mostly consumed: fresh vegetable
- Leaves and vines: cattle feed
- Value as a food crop decreasing
- A potential crop for bioprocessing

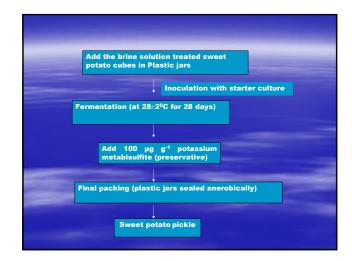
Prominent SP Clones

Beta- carotene

ST 14

Bioprocessing: Food and food additives


- Lacto- pickle
- Lacto-juice
- SP curd
- SP wine
- Food additives: lactic acid and glutamic acid


Lacto- pickle

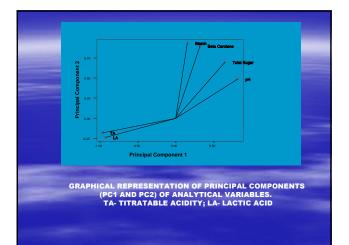
- Pickling of fruits and vegetablescommon to Asian countries
- Sauerkraut process
- Sauerkraut process
- *Kimchi*: Fermented Korean cabbage and radish
- Grundruk: Fermented mustard and radish in Nepal
- Dhamuoi; Fermented cabbage in Vietnam
 Kanji: Fermented carrot in India
- Fermented cucumber exported from India

Why lacto- pickling

- Feasible in small scale
- Inexpensive and can be made at home and in cottage industries
- Confers organoleptic taste
- Adds aroma and flavour
- Preserve nutritive components, i.e. ascorbic acid, beta- carotene, anthocyanin, etc.
- Bacteriocins produced by LAB kill intestinal pathogenic flora

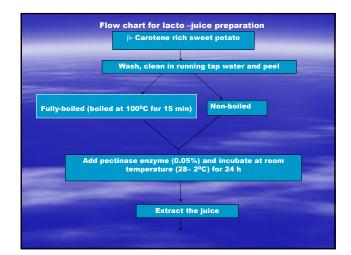
pH VALUES		POTATO DURIN IENTATION	G LACTIO	C ACID
Equilibrated Salt Concentration (%)	7 Days	14 Days	21 Day s	28 Days
2	2.6± 0.1	2.8± 0.4	2.9 ± 0.5	2.1 ± 0.1
4	2.6± 0.1	2.7 ± 0.3	2.5± 0.2	2.1 ± 0.1
6	2.8± 0.3	2.9 ± 0.5	3.0± 0.3	2.9 ± 0.5
8	2.8 ± 0.4	2.9± 0.5	3.1 ± 0.4	2.9 ± 0.5
10	2.9 ± 0.5	3.0 ± 0.3	3.1± 0.4	3.0 ± 0.3

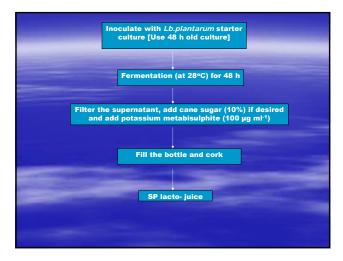
Initial (0 day) pH value of sweet potato roots was 5.5 \pm Standard deviations

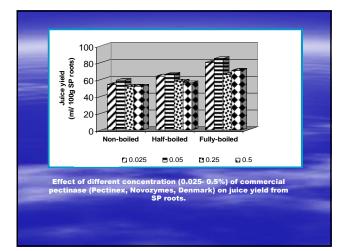

TITRATABLE ACIDITY AND LACTIC ACID* CONCENTRATIONS (g/ Kg ROOTS) OF SP DURING LACTIC ACID FERMENTATION

Equilibr. salt Conc. (%)	7 Days	14 Days	21 Days	28 Days
2	6.6 ±0.5 (4.9± 0.2)	5.7±0.3 (4.7± 0.2)	5.2± 0.2 (4.8 ± 0.3)	$\begin{array}{rrr} 5.4 \pm & 0.2 \\ (4.2 \pm 0.2) \end{array}$
4	$\begin{array}{rrr} 5.0 \pm \ 0.4 \\ (3.6 \pm \ 0.2) \end{array}$	$\begin{array}{l} 5.2 \pm \ 0.2 \\ (4.2 \pm \ 0.2) \end{array}$	$\begin{array}{rrrr} {\bf 5.2 \pm \ 0.2} \\ {\bf (4.4 \pm \ 0.3)} \end{array}$	5.2± 0.2 (4.0± 0.2)
6	4.0± 0.2 (3.0± 0.3)	$\begin{array}{rrr} \textbf{4.4} \pm \ \textbf{0.3} \\ \textbf{(3.5} \pm \ \textbf{0.1}) \end{array}$	$\begin{array}{rrr} \textbf{4.6} \pm & \textbf{0.3} \\ \textbf{(3.5} \pm & \textbf{0.2)} \end{array}$	4.0± 0.3 (3.4± 0.1)
8	3.1± 0.2 (2.6 ± 0.1)	$\begin{array}{rrr} \textbf{3.1} \pm \ \textbf{0.2} \\ \textbf{(2.0} \pm \ \textbf{0.1}) \end{array}$	3.8 ± 0.3 (3.6± 0.1)	$\begin{array}{ccc} 3.7 \pm & 0.3 \\ (3.2 \pm 0.2) \end{array}$
10	2.3 ± 0.1 (1.3± 0.1)	2.4 ± 0.1 (1.6 ± 0.1)	3.0 ± 0.3 (2.9 ± 0.1)	2.9 ± 0.5 (2.6 ± 0.2)

Initial (0 day) titratable acidity/ lactic acid value of sweet potato roots was 0.8 g/kg * Figures in parentheses indicate the corresponding lactic acid values \pm Standard deviations

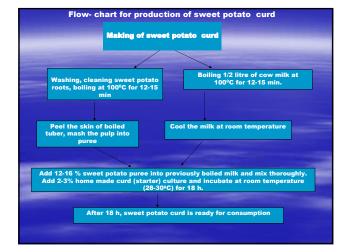

Attributes**	lacto-pickles
Texture	3.5
Taste	4.5
Aroma	4.0
Flavor	3.8
Color/Appearance	3.0
After taste	3.5





LACTO- JUICE

- Lactic –fermented vegetable and fruit juice are alternative to consumers intolerant or allergy to milk protein.
- Cabbage, carrot, celery and tomatovegetables from which lacto-juice mainly produced.
- SP- rich in starch, Vitamin C, Provitamin A, iron and minerals – suitable for lactojuice preparation.

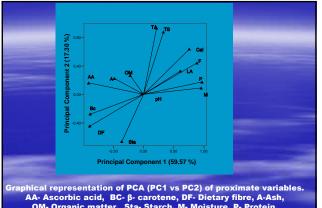


Treatm ent of SP	pН	ТА	LA	Starch	Total sugar	Reducing sugar	Total phenol	β-Caroten
Fully- boiled	3.3 ± 0.3 (6.1±0.9)	1.23 ± 1.8 (0.8±0.03)	1.19 ± 2.8 (0.7±0.05)	84 ± 3.4 (141±8.9)	$\begin{array}{c} 11.2 \pm 1.6 \\ (21.0 \pm 1.3) \end{array}$	3.5 ± 0.7 (7.5±0.3)	317 ± 3.9 (350±3.2)	130 ± 7.5 (140±4.9)
Non- boiled	$\begin{array}{c} \textbf{2.2} \pm \textbf{0.6} \\ \textbf{(5.8} \pm \textbf{0.4} \textbf{)} \end{array}$	1.46 ± 1.4 (0.7 ± 0.05)	1.27 ± 1.7 (0.5 ± 0.04)	98 ± 3.8 (145 ± 7.7)	11.9 ± 1.5 (21.4 ± 1.3)	4.2 ± 0.4 (8.0 ± 0.5)	365 ± 3.8 (450 ± 4.3)	155 ± 8.1 (156 ± 5.:

SP Curd

- Curd and yoghurt: lactic fermented products of milk
- Nutrititive enrichment: French bean, soybean
- Curd: Undefined mixed LAB- *Lb. bulgaricus, St. lactic, St. clemoris,* etc
- Yoghurt: defined LAB inoculum- Lb. bulgaricus and St. thermophilus

WEET POTATO CURD TIEN TECHNOLOGY	


SP(%) in curd	рH	T.A. (g kg ⁻¹)	L.A.(g kg ⁻¹)
0	3.88 ± 0.88	12.3 ±0.5	8.0 ± 0.3
4	$\textbf{3.59} \pm \textbf{0.08}$	10.6± 0.5	7.9 ± 0.2
8	$\textbf{3.66} \pm \textbf{0.07}$	9.9±0.6	7.6 ± 0.1
12	$\textbf{3.60} \pm \textbf{0.08}$	$\textbf{11.5} \pm \textbf{0.5}$	7.5 ±0.5
16	$\textbf{3.61} \pm \textbf{0.07}$	$\textbf{10.5} \pm \textbf{0.5}$	$\textbf{6.5}\pm\textbf{0.4}$
20	$\textbf{3.66} \pm \textbf{0.07}$	11.8 ± 0.5	5.0± 0.5
24	$\textbf{3.57} \pm \textbf{0.05}$	10.3 ± 0.7	$\textbf{5.3} \pm \textbf{0.6}$
⊧ stand	ard deviation		

Sweet potato in curd	β-carotene (mg kg ⁻¹)
0	0
4	8.0 ± 0.1
8	14.0 ± 0.2
12	$\textbf{26.0} \pm \textbf{0.3}$
16	$\textbf{31.0} \pm \textbf{0.3}$
20	$\textbf{38.0} \pm \textbf{0.3}$
tandard deviation	
-	and the second second

P (%)	Calorie (kcaig 1)	Organic matter (g kg ⁻¹)	Moisture (%)	Protein (g kg ⁻¹)	Fat (g kg²)	Ash (g kg-1)	Dietary fibr es
0	5.185	939.2±0.02	88.2±0.01	215.0±4.76	222.0±3.4 4	60.8±2.34	(g kg⁻¹) 0
4	5.015	935.1±0.02	88.3±0.01	209.0±4.98	183.0±2.7 8	64.9±3.44	7.5±0.2
8	4.95	936.2±0.02	86.4±0.01	196.0±3.11	130.0±2.9 9	63.8±2.78	17.8±0. 9
12	4.95	937.1±0.02	85.2±0.01	181.0±3.78	128.0±3.4 1	73.9±3.21	18.5±1. 2
16	4.95	941.7±0.02	85.1±0.01	183.0±4.12	131.0±2.4 3	58.3±3.98	19.8±1. 7

Sweet potato (%) in	Sequences of sampling	MRS* (CFU ⁵⁴ curd)
curd 8	After fermentation for 6hr	2 x 10 ⁷
	After fermentation for 18hr	5 x 10 ⁷
16	After fermentation for 6 hr	7 x 10 ⁷
	After fermentation for 18hr	14 x 10 ⁷

Graphical representation of PCA (PC1 vs PC2) of proximate variables. AA- Ascorbic acid, BC-β- carotene, DF- Dietary fibre, A-Ash, OM- Organic matter, Sta- Starch, M- Moisture, P- Protein, LA- Lactic acid, F- Fat, Cal- Calorie, TS-Total sugar, TA- Titratable acidity

Food additives

- Lactic acid production in SSF and SmF
- Glutamic acid production in SSF and SmF
- Wine Vinegar from SP red wine

Bioprocessing: Ethanol from SP

Steps

- □ Milling SP Chips or flour
- Liquefaction by treatment with **Termamyl**^R
- Saccharification with AMG
- □ Fermentation
- □ Distillation
- Yield: 140g ethanol/kg sweet potato tubers

CONCLUSION

- Bioprocessing major path for valueaddition.
- Beta-carotene and anthocyanin varieties suitable for lacto-pickle, lacto-juice, wine and as ingredient in SP curd.
- Substrate for fermentation : lactic acid, glutamic acid and vinegar.
- Potential crop for bioethanol.

Selected Publications

- 1. Ray, R.C. and Ravi, V. (2005). Post harvest spoilage of sweet potato in tropics and control measures. Crit. Rev. Food Sci. Nutr. 45: 623- 644.
- 2.Panda, S.H., Naskar, S.K. and Ray, R.C. (2006). Production, proximate and nutritional evaluation of sweet potato curd. J. Food Agric. Environ. 4: 124 -127.
- Coor Agnet: Environ. 4: 124 -127.
 Mohapatra, S., Panda, S.H., Sahoo, S.K., Siva kumar, P.S. and Ray, R.C. (2006). Beta- carotene rich sweet potato curd: production, nutritional and proximate composition. Int. J. Food Sci. Technol. in press.
- Sci. Technol. in press.
 4. Panda, S.H., Parmanick, M. and Ray, R.C. (2007). Lactic acid fermentation of sweet potato into lacto-pickles. J. food Process. Preserv. 31(1); in press.
 5. Ray, R.C., Siva kumar, P.S. and Naskar, S.K. (2005). Sweet potato curd. Technical Bull. No. 39, CTCRI, Thiruvanathapuram, India, 24pp.

